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Abstract

This thises numerically investigates the influence of aligned magnetic field, Cattaeno-

Christov heat flux and chemical reaction of the flow of an electrically conducting

nanofluid past a nonlinear stretching sheet through a porous medium with fric-

tional heating. The partial differential equtions governing the flow problems are

converted to ordinary differential equtions via similarity variables. The reduced

equtions are then solved numerically with the aid of shooting method. The influ-

ence of physical parameters such as nanoparticle volume fraction φ, permeability

parameter K, nonlinear stretching sheet parameter n, magnetic field parameter M ,

heat generation parameter Q, Eckert number Ec, Prandtl number Pr, relaxation

time parameter γ1, thermophoresis parameter Nt, Brownain motion parameter

Nb, Lewis number Le and chemical reaction parameter γ2 on the velocity profile,

temperature distribution, concentration profile, skin friction coefficient, Nusselt

number and Sherwood number are studied and presented in graphical and tabu-

lar forms. The results obtained reveal that there is an enhancement in the rate

of heat transfer with a rise in the nanoparticle volume fraction and permeabil-

ity parameter. The temperature distribution is also influenced by the presence

of relaxation time parameter γ1, Brownain motion parameter Nb, thermal radia-

tion R and nanoparticle volume fraction φ. This shows that the volume fraction

of nanoparticles can be used in controlling the behaviours of heat transfer and

nanofluid flows.
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Chapter 1

Introduction

The efficiency of speration of heat transfer is dependant on the functioning of

thermal conductivity of operating fluid, such as water, oil and ethyl glycol. If a

little portion of nanoparticles (such as Cu, Ag, TiO2 and Al2O3) is immersed into

a conventional fluid, a new category of fluids is obtained which is called nanoflu-

ids [1]. Nanofluids paved a new pathway to innovations in the improvement of the

characteristics of heat transfer. There is wide variety of nanoparticles which are

categorised according to their size, shape, thermal and electrical conductivity and

heat transfer abilities. They are made up of metals, carbides and oxides. Some are

named as nanofibers, nanowires, nanotubes and nanosheets [2]. Nanofluid has var-

ious applications in industrial devices, heat exchanger [3], drug delivery, medicines,

car radiators, cooling of heat exchanging equipments, transformer oil cooling, elec-

tronic cooling [4, 5]. The diameter of the suspended nanoparticle varies between

1 to 100nm. There appears a dramatic boost in the thermophysical properties of

the conventional fluid when the nanoparticle are suspended in it.

On account of the point mentioned above, Choi [1] introduced solid nanoparticles

into the operating conventional fluid with the target of forming a new class of fluids

that will have high thermal conductivity in contrast to the customany conventional

fluid. He designated the combination of nanoparticles and the conventional base

fluid as nanofluid. Xuan and Li [6] analyzed the combination of Cu nanofluid

and distilled water afterwards and mentioned that the thermal conductivity of the

1
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water-based Cu nanofluid is higher as compared with that of the distilled water

in a ratio approximately 1.24 to 1.78. Moreover, Choi et al. [7] figured that a

small inclusion of solid nanoparticles into conventional heat transfer liquid raises

the thermal conductivity of the conventional liquid by a percentage of 200.

In 2006, Buongiorno [8] presented a detailed discussion on convective transport

system in nanofluid. He encountered the fact that Brownian diffusion and ther-

mophoresis are the primary mechanisms for the improvement of heat transfer and

deduced that the immense fluctuations of temperature in the boundary layer zone

result in noticeable reducetion in fluid viscosity which as a consequence leads to a

rise in coefficient of heat transfer.

Tiwari and Das [9] in 2007, further devised a model for the examination of

nanofluid and heat transfer within a two-sided lid-driven square cavity and an-

alyzed the role of nanoparticle volume fraction. They emphasized on the prime

role of nanoparticle volume fraction for evaluating the impact of nanoparticles in

the fluid flow and rate of heat transfer. Yang et al. [10] mentioned that, the ther-

mal conductivity of nanofluid relies highly on nanoparticles volume fraction and

their different properties such as diameter and shape.

Khan and Pop [11] were the first to perform an experiment depicting the response

of nanofluid flow over a stretching sheet using Buongiorno’s configuration. They

came out with a conclusion that the rate of heat transfer is reduced with an in-

crease in the Brownain diffusion and thermophoresis parameters. With time, Rana

and Bhargava [12] added slight modifications to Khan and Pop’s [11] in original

experiment. They focused on the steady viscous nanofluid flow over a nonlin-

ear stretching sheet using finite element method (FEM). Their findings indicated

that an increase in the Brownain motion and thermophoresis parameters cause

an improvement in the thermal boundary layer thickness. Moreover, Hamad and

Ferdows [13] following Tiwari and Das model addressed the similarity solution

of viscous boundary layer flow of nanofluid over a nonlinear stretching surface.

Soon it was made clear that the presence of nanoparticles in the base fluid is ca-

pable of bringing about change in the pattern and behaviour of fluid flow based

on the impacts of nanoparticle and nonlinear stretching sheet parameter. The
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impact of radiation and variable wall temperature on nanofluid flow past a non-

linear stretching surface was investigated by Hady et al. [14]. According to them,

the temperature of the nanofluid is reduced with a rise in the nonlinear stretch-

ing sheet and radiation parameters. In the presence of a partial condition effect,

Das [15] again performed the same technique by taking account of the specified

surface temperature. His main finding was that increase in the nonlinear stretch-

ing sheet parameter and slip parameter causes a fall in the nanofluid velocity

and a rise in the thickness of the boundary layer. Khan et al. [16] observed a

three dimensional nanofluid flow past a nonlinear stretching sheet depicting the

4th and 5th order Runge-kutta methods. Malvandi et al. [17] demonstrated a

stagnation point nanofluid flow past a nonlinear stretching sheet with suction/in-

jection. They demonstrate that with the increased suction parameter, the heat

transfer rate rises and decreases with the increased blowing parameter. Khan and

Shehzad [18] worked on the effect of thermophoresis and Brownain movement on

third grade nanofluid and rate of heat transfer past an oscillatory dynamic sheet.

Many authors [19–24] have contributed generously to the vastness of study of elec-

trically conducting nanofluids covering the fields of engineering and technological

process such the plasma studies, MHD pumps, MHD generators and bearings.

Noteable considerations also include either the viscous dissipation, thermal radi-

ation or heat generation responses on the boundary layer flow of nanofluid and

the features of heat transfer rate embedded in porous medium. This method is

commonly used in oil reservoirs and geothermal engineering. Ahmad et al. [25]

analyzed the behaviour of MHD viscous flow over an exponentially stretching sur-

face with radiative effect in a porous medium. In the presence of thermal radiation

through a porous medium over a linear stretching sheet, Williamson fluid film flow

and heat transfer were examined by Shah et al. [26]. In their study, they noted

that an increase in the porosity parameter decreases the flow of thin films and that

the Lorentz force affects the flow of liquid film. Research regarding MHD bound-

ary layer flow of nanofluids in a porous medium were also put forth by Zeeshan et

al. [27]. Pal and Mandal [28] demonstrated the impact of thermal radiation and

heat generation on convective nanofluid flow through a stagnation point in a porous
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medium. Hybrid approach to numerically dissect the effects of viscous dissipation

on MHD boundary layer nanofluid flow over a nonlinear stretching sheet saturated

in a porous medium was triumphantly used by Rama and Chandra [29]. Haroun

et al. [30] devised the technique of spectral relaxation to examine the influence

of chemical reaction, viscous dissipation and radiation on MHD nanofluid flow in

a porous medium and found that velocity field is reduced with a rise in porosity

parameter, while an increase in porosity parameter also increases the temperature

distribution. On the same theme MHD nanofluid flow and rate of heat transfer

between porous medium and stretching sheet was examined by Geng et al. [31].

Further adding to the list, Patel [32] throughly studied homotopy analysis, the

influence of heat generation, nonlinear thermal diffusion, and cross-diffusion on an

electrically conducting Casson fluid saturated in a porous medium. He concluded

from his experience that with a decrease in the value of magnetic field, skin friction

can be minimized.

The chemical reaction can further be classified heterogeneous and homogenous

processes. In the case of the strong compound system, the reaction is heteroge-

nous. In most of the cases of chemical reaction processes, the concentration rate

depends upon the species itself as discussed by Magyari and Chamkha et al. [33].

Chamkha and Rashad [34] talked about the impact of chemical reaction on MHD

flow in the presence of heat generation or absorption of uniform vertical permeable

surface. Das [35] explained the impact of chemical reaction with radiation on the

heat and mass exchange along the MHD flow.

1.1 Thesis Contributions

The present survey is focused on the numerical analysis of MHD radiative nanofluid

flow with inclined magnetic field, Cattaneo-Christov heat flux, thermophoresis dif-

fusion, Brownain motion and chemical reaction. The proposed nonlinear PDEs are

converted into system of ODEs by applying similarity transformations. Further,

for finding the numerical results of nonlinear ODEs, shooting method is utilized.

The numerically obtained results are computed by using MATLAB. The impact
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of significant parameters on velocity distribution f ′(ξ), temperature distribution

θ(ξ) and concentration distribution h(ξ), skin friction coefficient Cf , local Nusselt

number Nux and local Sherwood number Shx have been discussed in graphs and

tables.

1.2 Layout of Thesis

A brief overview of the contents of the thesis is provided below.

Chapter 2 includes some basic definitions and terminologies, which are useful

to understand the concepts discussed later on.

Chapter 3 provides the proposed analytical study of MHD radiative nanofluid

flow in the porous medium induced by a nonlinear stretching sheet. The numerical

results of the governing flow equations are derived by the shooting method.

Chapter 4 extends the proposed model flow discussed in Chapter 3 by including

the impacts of inclined magnetic field, Cattaneo-Christov heat flux, thermophore-

sis diffusion, Brownain motion and chemical reaction.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

This chapter contains some basic definitions and governing laws, which will be

helpful in the subsequent chapters.

2.1 Some Basic Terminologies

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [36]

Definition 2.1.2 (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.” [37]

Definition 2.1.3 (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluids in mo-

tion, that branch of science is called fluid dynamics.” [37]

6
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Definition 2.1.4 (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [37]

Definition 2.1.5 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [37]

Definition 2.1.6 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called nu. Mathematically,

ν =
µ

ρ
.” [37]

Definition 2.1.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [38]

Definition 2.1.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as,

α =
k

ρCp
,
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where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density

and Cp is the specifc heat at constant pressure.” [39]

2.2 Types of Fluid

Definition 2.2.1 (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [37]

Definition 2.2.2 (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [37]

Definition 2.2.3 (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [37]

Definition 2.2.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid.

τxy ∝
(
du

dy

)m
, m 6= 1

τxy = µ

(
du

dy

)m
.” [37]

Definition 2.2.5 (Magnetohydrodynamics)

“Magnetohydrodynamics(MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting
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and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [40]

2.3 Types of Flow

Definition 2.3.1 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [37]

Definition 2.3.2 (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [37]

Definition 2.3.3 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ 6= k,

where k is constant.” [37]

Definition 2.3.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [37]
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Definition 2.3.5 (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at

any point in open channel flow do not change with respect to time, the flow is said

to be steady flow. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [37]

Definition 2.3.6 (Unsteady Flow)

“If at any point in open channel flow, the velocity of flow, depth of flow or rate of

flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
6= 0,

where Q is any fluid property.” [37]

Definition 2.3.7 (Internal Flow)

“Flows completely bounded by a solid surfaces are called internal or duct flows.” [36]

Definition 2.3.8 (External Flow)

“Flows over bodies immersed in an unbounded fluid are said to be an external

flow.” [36]

2.4 Modes of Heat Transfer

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another
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due to the occurrence of a temperature difference.” [38]

Definition 2.4.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.” [38]

Definition 2.4.3 (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newtons law of cooling.” [38]

Definition 2.4.4 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium.” [38]

2.5 Dimensionless Numbers

Definition 2.5.1 (Eckert Number)

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T

where Cp denotes the specific heat.” [36]

Definition 2.5.2 (Prandtl Number)

“It is the ratio between the momentum diffusivity ν and thermal diffusivity α.
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Mathematically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp
k

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [36]

Definition 2.5.3 (Skin Friction Coefficient)

“The steady flow of an incompressible gas or liquid in a long pipe of internal D.

The mean velocity is denoted by uw. The skin friction coefficient can be defined

as

Cf =
2τ0
ρu2w

where τ0 denotes the wall shear stress and ρ is the density.” [41]

Definition 2.5.4 (Nusselt Number)

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu =
qL

k

where q stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [42]

Definition 2.5.5 (Sherwood Number)

“It is the nondimensional quantity which show the ratio of the mass transport by



Basic Terminologies 13

convection to the transfer of mass by diffusion. Mathematically:

Sh =
kL

D

here L is characteristics length, D is the mass diffusivity and k is the mass trans-

fer” coeffcient.” [43]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
V L

ν
,

where U denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [37]

2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change

of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

∂ρ

∂t
+∇.(ρu) = 0.” [38]

Definition 2.6.2 (Momentum Equation)

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newtons Third Law of action and reaction
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governs the internal forces. Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.” [38]

Definition 2.6.3 (Energy Equation)

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ,

where φ is the dissipation function.” [38]

2.7 Shooting Method

To elaborate the shooting method, consider the following nonlinear boundary value

problem.

f ′′(x) = f(x)f ′(x) + 2f 2(x)

f(0) = 0, f(G) = J.

 (2.1)

To reduce the order of the above boundary value problem, introduce the following

notations.

f = Y1 f ′ = Y ′1 = Y2 f ′′ = Y ′2 . (2.2)

As a result, (2.1) is converted into the following system of first order ODEs.

Y ′1 = Y2, Y1(0) = 0, (2.3)

Y ′2 = Y1Y2 + 2Y 2
1 , Y2(0) = w, (2.4)
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where w is the missing initial condition which will be guessed.

The above IVP will be numerically solved by the RK-4 method. The missing

condition w is to be chosen such that.

Y1(G,w) = J. (2.5)

For convenience, now onward Y1(G,w) will be denoted by Y1(w).

Let us further denote Y1(w)− J by H(w), so that

H(w) = 0. (2.6)

The above equation can be solved by using Newton’s method with the following

iterative formula.

wn+1 = wn − H(wn)
∂H(wn)
∂w

,

or

wn+1 = wn − Y1(w
n)− J

∂Y1(wn)
∂w

. (2.7)

To find ∂Y1(wn)
∂w

, introduce the following notations.

∂Y1
∂w

= Y3,
∂Y2
∂w

= Y4. (2.8)

As a result of these new notations the Newton’s iterative scheme, will then get the

form.

wn+1 = wn − Y1(w)− J
Y3(w)

. (2.9)
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Now differentiating the system of two first order ODEs (2.3)-(2.4) with respect to

w, we get another system of ODEs, as follows.

Y ′3 = Y4, Y3(0) = 0. (2.10)

Y ′4 = Y3Y2 + Y1Y4 + 4Y1Y3, Y4(0) = 1. (2.11)

Writing all the four ODEs (2.3), (2.4), (2.10) and (2.11) together, we have the

following initial value problem.

Y ′1 = Y2, Y1(0) = 0.

Y ′2 = Y1Y2 + 2Y 2
1 , Y2(0) = w.

Y ′3 = Y4, Y3(0) = 0.

Y ′4 = Y3Y2 + Y1Y4 + 4Y1Y3, Y4(0) = 1.

The above system together will be solved numerically by Runge-Kutta method of

order four.

The stopping criteria for the Newton’s technique is set as,

| Y1(w)− J |< ε,

where ε > 0 is an arbitrarily small positive number.



Chapter 3

MHD Radiative Nanofluid Flow

in the Porous Medium Induced

by a Nonlinear Stretching Sheet

3.1 Introduction

In this chapter, consideration has been given to the numerical analysis of MHD

nanofluid flow past nonlinear stretching sheet, saturated in a porous medium in the

presence of magnetic field, heat generation and thermal radiation. The governing

nonlinear PDEs are converted into a system of dimensionless ODEs by utilizing the

appropriate transformations. In order to solve the ODEs, the shooting technique

is implemented in MATLAB. At the end of this chapter the numerical solution

for various parameters is discussed for the dimensionless velocity f ′(ξ) profile and

temperature distribution θ(ξ). Investigation of obtained numerical results are

given through tables and graphs. This chapter provides a detailed review of the

work presented by Jafar et al. [44].

17
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3.2 Mathematical Modeling

A 2D MHD flow of nanofluid past a nonlinear stretching sheet with y = 0 has been

investigated. The flow is considered along y-axis with y > 0. It is assumed that

the variable stretching velocity, the variable magnetic field and the variable perme-

ability of the porous medium of the nanofluid flow are Uw(x)=axn, B(x)=B0x
2n−1

and k(x)=k0x
n−1 and respectively [29]. The fluid’s layer along the stretching sur-

face is maintained at a temperature of Tw=T∞ + bx2n−1, where n is the surface

temperature parameter, and T∞ is the nanofluid’s ambient temperature.

Figure 3.1: systematic representation of physical model.
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The set of equations describing the flow are as follows.

∂u

∂x
+
∂v

∂y
= 0, (3.1)

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= µnf

(
∂2u

∂y2

)
− µnf
k(x)

u− σnfB2(x)u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
=

µnf
(ρCp)nf

(
∂u

∂y

)2

+ αnf

(
∂2T

∂y2

)
− 1

(ρCp)nf

(
∂qr
∂y

)
+

q

(ρCp)nf
(T − T∞). (3.3)

The associated BCs have been taken as.

u = Uw(x) = axn, v = 0, T = Tw = T∞ + bx2n−1, at y = 0,

u→ 0, T → T∞, as y →∞.

 (3.4)

In the above model, x is the direction around the sheet, the direction perpendicular

to the sheet is y, u and v are the xy-direction horizontal and vertical velocity.

Where the radiative heat flux and heat generation constants are qr and q.

The radiative heat flux is given by

qr = −4σ∗

3k∗
∂T 4

∂y
,

where σ∗ is the Stefan-Boltzman constant and k∗ is the absorption coefficient. If

the temperature difference is very small, then the temperature T 4 can be expanded

about T∞ using Taylor series, as follows.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

Ignoring the higher order terms, we have

T 4 = T 4
∞ + 4T 3

∞(T − T∞),

T 4 = T 4
∞ + 4T 3

∞T − 4T 4
∞,

T 4 = −3T 4
∞ + 4T 3

∞T,

T 4 = 4T 3
∞T − 3T 4

∞.
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The thermophysical properties of nanofluid are formulated as [9, 13, 45]:

αnf =
kf

(ρCp)nf
,

ρnf = (1− φ)ρf + φρs,

µnf =
µf

(1− φ)2.5
,

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s,

knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

,

σnf
σf

= 1 +
3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ
.

The following notations have been defined:

A1 = (1− φ)2.5,

A2 = 1− φ+ φ
ρs
ρf
,

A3 = 1 +
3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ
,

A4 =
knf
kf

(
1 +

4

3
R
)
,

A5 =

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
,

A6 =

(
Ec

(1− φ)2.5

)
.

For the conversion of the mathematical model (3.1)-(3.3) into the system of ODEs,

the following similarity transformation was used by [44].

ψ(x, y) =

√
2aνf
n+ 1

x
n+1
2 f(ξ), θ(ξ) =

T − T∞
Tw − T∞

,

ξ = x
n−1
2 y

√
(n+ 1)a

2νf
,

 (3.5)

where ψ denotes the stream function.

The detailed procedure for the conversion of (3.1)-(3.3) into the dimensionless
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form has been discussed below.

u =
∂ψ

∂y
,

∂u

∂x
=

∂

∂x

(
∂ψ

∂y

)
,

∂ψ

∂y
=

∂

∂y

(√
2νfa

n+ 1
x

n+1
2 f(ξ)

)
,

=

√
2νfa

n+ 1
x

n+1
2 f ′(ξ)

∂ξ

∂y
,

∂ξ

∂y
=

√
a(n+ 1)

2νf
x

n−1
2 ,

=

√
2νfa

n+ 1
x

n+1
2 f ′(ξ)

√
a(n+ 1)

2νf
x

n−1
2 ,

∂ψ

∂y
= axnf ′(ξ),

u = axnf ′(ξ). (3.6)

∂u

∂x
=

∂

∂x
(af ′(ξ)xn) ,

= a
∂

∂x
(f ′(ξ)xn) ,

= a

(
nxn−1f ′(ξ) + xnf ′′(ξ)

∂ξ

∂x

)
,

= a

(
nxn−1f ′(ξ) + xnf ′′(ξ)y

√
a(n+ 1)

2νf

(
n− 1

2

)
x

n−3
2

)
,

= a

(
nxn−1f ′(ξ) + xn−1f ′′ξ

(
n− 1

2

))
,

= axn−1
(
nf ′(ξ) + ξf ′′(ξ)

(
n− 1

2

))
. (3.7)

v = −∂ψ
∂x

,

∂v

∂y
= − ∂

∂y

(
∂ψ

∂x

)
,

∂ψ

∂x
= − ∂

∂x

(√
2aνf
n+ 1

x
n+1
2 f(ξ)

)
,

= −

(√
2νfa

n+ 1

n+ 1

2
x

n−1
2 f(ξ) +

√
2νfa

n+ 1
x

n+1
2 f ′(ξ)

∂ξ

∂x

)
,

= −
√

2νfa

n+ 1

(
n+ 1

2
x

n−1
2 f(ξ) + x

n+1
2 f ′(ξ)

∂ξ

∂x

)
,
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= −
√

2νfa

n+ 1

(
n+ 1

2
x

n−1
2 f(ξ) + x

n+1
2 f ′(ξ)y

√
a(n+ 1)

2νf

(
n− 1

2

)
x

n−3
2

)
,

= −
√

2νfa

n+ 1

(
n+ 1

2
x

n−1
2 f(ξ) + x

n+1
2 f ′(ξ)ξ

(
n− 1

2

)
x−1
)
,

= −x
n−1
2

√
2νfa

n+ 1

(
n+ 1

2
f(ξ) + f ′(ξ)ξ

(
n− 1

2

))
,

= −x
n−1
2

√
4(n+ 1)νa

2(n+ 1)2

(
n+ 1

2
f(ξ) + f ′(ξ)ξ

(
n− 1

2

))
,

= −x
n−1
2

√
νfa(n+ 1)

2
f(ξ)− x

n−1
2

√
2(n+ 1)νfa

2
f ′(ξ)ξ

(
n− 1

n+ 1

)
,

v = −x
n−1
2

√
νfa(n+ 1)

2

(
f(ξ) +

(
n− 1

n+ 1

)
ξf ′(ξ)

)
. (3.8)

∂v

∂y
=

∂

∂y

[
−x

n−1
2

√
(n+ 1)νfa

2

(
f(ξ) +

(
n− 1

n+ 1

)
ξf ′(ξ)

)]
,

= −x
n−1
2

√
(n+ 1)νfa

2

[
f ′(ξ)

∂ξ

∂y
+

(
n− 1

n+ 1

)
ξf ′′(ξ)

∂ξ

∂y
+

(
n− 1

n+ 1

)
f ′(ξ)

∂ξ

∂y

]
,

= −x
n−1
2

√
(n+ 1)νfa

2

[
f ′(ξ) +

(
n− 1

n+ 1

)
ξf ′′(ξ)

]√
(n+ 1)a

2νf
x

n−1
2

− x
n−1
2

√
(n+ 1)νfa

2

((
n− 1

n+ 1

)
f ′(ξ)

)√
(n+ 1)a

2νf
x

n−1
2 ,

= −a
2
xn−1(n+ 1)

(
f ′(ξ) +

(
n− 1

n+ 1

)
ξf ′′(ξ) +

(
n− 1

n+ 1

)
f ′(ξ)

)
,

= −a
2
xn−1 (f ′(ξ)(n+ 1) + (n− 1)ξf ′′(ξ) + (n− 1)f ′(ξ)) ,

= −a
2
xn−1f ′(ξ)(n+ 1 + n− 1)− a

2
xn−1(n− 1)ξf ′′(ξ),

= −a
2
xn−12nf ′(ξ)− a

2
xn−1(n− 1)ξf ′′(ξ),

= −axn−1nf ′(ξ)− axn−1
(
n− 1

2

)
ξf ′′(ξ). (3.9)

Equation (3.1) is easily satisfied by using (3.7) and (3.9), as follows

∂u

∂x
+
∂v

∂y
= axn−1nf ′(ξ) + axn−1

(
n− 1

2

)
ξf ′′(ξ)− axn−1nf ′(ξ)

− axn−1
(
n− 1

2

)
ξf ′′(ξ),

∂u

∂x
+
∂v

∂y
= 0. (3.10)
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Now, for the momentum equation (3.2) the following derivatives are required.

∂u

∂y
=

∂

∂y
(axnf ′(ξ)),

= a
∂

∂y
(xnf ′(ξ)),

= axnf ′′(ξ)
∂ξ

∂y
,

∂u

∂y
= axnf ′′(ξ)

√
a(n+ 1)

2νf
x

n−1
2 . (3.11)

∂2u

∂y2
= axnf ′′′(ξ)

√
a(n+ 1)

2νf
x

n−1
2
∂ξ

∂y
,

= af ′′′(ξ)

√
a(n+ 1)

2νf
x

n−1
2 xn

√
a(n+ 1)

2νf
x

n−1
2 ,

∂2u

∂y2
= a2x2n−1f ′′′(ξ)

(
n+ 1

2νf

)
. (3.12)

u
∂u

∂x
= axnf ′(ξ)

(
axn−1nf ′(ξ) + axn−1

(
n− 1

2

)
ξf ′′(ξ)

)
,

= a2x2n−1nf ′2(ξ) + a2x2n−1
(
n− 1

2

)
ξf ′(ξ)f ′′(ξ). (3.13)

v
∂u

∂y
= −

√
aνf (n+ 1)

2
x

n−1
2

(
ξf ′(ξ)

(
n− 1

n+ 1

)
+ f(ξ)

)(
axnf ′′(ξ)

√
a(n+ 1)

2
x

n−1
2

)
,

= −
√
aνf (n+ 1)

2
x

n−1
2 f ′(ξ)ξ

n− 1

n+ 1
axnf ′′(ξ)

√
a(n+ 1)

2νf
x

n−1
2

−
√
aνf (n+ 1)

2
x

n−1
2 f(ξ)axnf ′′(ξ)

√
a(n+ 1)

2νf
x

n−1
2 ,

= −a
2(n+ 1)

2
x2n−1f ′(ξ)f ′′(ξ)ξ

(
n− 1

n+ 1

)
− a2(n+ 1)

2
x2n−1f(η)f ′′(ξ). (3.14)

Using (3.13) and (3.14) in the left side of (3.2) becomes

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= ρnf

(
a2x2n−1nf ′2(ξ) + a2x2n−1

(
n− 1

2

)
ξf ′(ξ)f ′′(ξ)

)

+ ρnf

(
− a2(n+ 1)

2
x2n−1f ′(ξ)f ′′(ξ)ξ

(n− 1

n+ 1

)
− a2(n+ 1)

2
x2n−1f(ξ)f ′′(ξ)

)
,
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= ρnfa
2x2a−1nf ′2(ξ) + ρnfa

2x2n−1
(
n− 1

2

)
ξf ′(ξ)f ′′(ξ)

− ρnf
a2(n+ 1)

2
x2n−1ξf ′(ξ)f ′′(ξ)

(
n− 1

n+ 1

)
− ρnf

a2(n+ 1)

2
x2n−1f(ξ)f ′′(ξ),

= ρnf

(
a2x2n−1nf ′2(ξ)− a2(n+ 1)

2
x2n−1f(ξ)f ′′(ξ)

)
,

= ρnfa
2x2n−1

(
nf ′2(ξ)−

(
n+ 1

2

)
f(ξ)f ′′(ξ)

)
. (3.15)

Using (3.6) and (3.12), in the right side of (3.2) becomes,

µnf

(
∂2u

∂y2

)
− µnf
k(x)

u− σnfB2(x)u = µnf

(
a2x2n−1f ′′′(ξ)

(
n+ 1

2νf

))
− µnf
k(x)

axnf ′(ξ)− σnfB2(x)axn−1f ′(ξ)

= µnf

(
a2x2n−1f ′′′(ξ)

(
n+ 1

2νf

))
− µnf
k0x1−n

axnf ′(ξ)− σnfB2
0ax

3n−1f ′(ξ). (3.16)

Comparing (3.15) and (3.16), the dimensionless form of (3.2) can be written as.

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= µnf

(
∂2u

∂y2

)
− µnf
k(x)

u− σnfB2(x)u,

ρnfa
2x2n−1

(
nf ′2(ξ)−

(
n+ 1

2

)
f(ξ)f ′′(ξ)

)
= µnfa

2x2n−1f ′′′(ξ)

(
n+ 1

2νf

)
− µnf
k0x1−n

axnf ′(ξ)− σnfB2
0ax

3n−1f ′(ξ),

νf
ρnf
µnf

((
2n

n+ 1

)
f ′2(ξ)− f(ξ)f ′′(ξ)

)
= f ′′′(ξ)

−
(

2

n+ 1

)(
νf
k0a

f ′(ξ) +
σnfνfB

2
0x

n

µnfa
f ′(ξ)

)
,

f ′′′(ξ) + (1− φ)2.5
(

1− φ+ φ
ρs
ρf

)(
f(ξ)f ′′(ξ)−

(
2n

n+ 1

)
f ′2(ξ)

)

−
(

2

n− 1

)K +M(1− φ)2.5

1 +
3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ

 f ′(ξ) = 0,

f ′′′(ξ) + A1A2

(
f(ξ)f ′′(ξ)−

(
2n

n+ 1

)
f ′2(ξ)

)

−
(

2

n+ 1

)
(K +MA1A3) f

′(ξ) = 0. (3.17)
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Now, for the conversion of energy equation (3.3) the following derivatives are

required.

As in equation (3.5)

θ(ξ) =
T − T∞
Tw − T∞

,

T = θ(ξ)(Tw − T∞) + T∞.

∂T

∂x
= (Tw − T∞)θ′(ξ)

∂ξ

∂x
,

∂ξ

∂x
= y

√
a(n+ 1)

2νf
x

n−3
2

(
n− 1

2

)
.

= (Tw − T∞)y

√
a(n+ 1)

2νf
x

n−3
2

(
n− 1

2

)
θ′(ξ). (3.18)

∂T

∂y
= (Tw − T∞)θ′(ξ)

∂ξ

∂y
,

= (Tw − T∞)

√
a(n+ 1)

2νf
x

n−1
2 θ′(ξ). (3.19)

∂2T

∂y2
= (Tw − T∞)

√
a(n+ 1)

2νf
x

n−1
2 θ′′(ξ)

∂ξ

∂y
,

∂2T

∂y2
= (Tw − T∞)

(
a(n+ 1)

2νf

)
xn−1θ′′(ξ). (3.20)

(
∂u

∂y

)2

=

(
ax

3n−1
2

√
a(n+ 1)

2νf
f ′′(ξ)

)2

,(
∂u

∂y

)2

= a2x3n−1
a(n+ 1)

2νf
f ′′2(ξ). (3.21)

qr = −4σ∗

3k∗
∂T 4

∂y
,

qr = −4σ∗

3k∗
∂

∂y
(4T 3

∞T − 3T 4
∞).

qr = −4σ∗

3k∗
∂

∂y
(4T 3

∞T ).

qr = −16σ∗

3k∗
T 3
∞
∂T

∂y
.

∂qr
∂y

= −16σ∗

3k∗
T 3
∞
∂2T

∂y2
,

∂qr
∂y

= −16σ∗

3k∗
T 3
∞x

n−1a(n+ 1)

2νf
(Tw − T∞)θ′′(ξ). (3.22)

(T − T∞) = (Tw − T∞)θ(ξ). (3.23)
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Using (3.18) and (3.19) in the left side of (3.3), we get

u
∂T

∂x
+ v

∂T

∂y
= axnf ′(ξ)

[
(Tw − T∞)

(
n− 1

2x

)
ξθ′(ξ)

]
+

[
− x

n−1
2

√
a(n+ 1)

2νf[(
n− 1

n+ 1

)
ξf ′(ξ) + f(ξ)

]][
(Tw − T∞)

√
a(n+ 1)

2νf
x

n−1
2 θ′(ξ)

]
,

= axn−1(Tw − T∞)

(
n− 1

2

)
ξf ′(ξ)θ′(ξ)

−
(

(n+ 1)a

2

)
xn−1(Tw − T∞)

(
n− 1

n+ 1

)
ξθ′(ξ)f ′(ξ)

−
(
a(n+ 1)

2

)
xn−1(Tw − T∞)f(ξ)θ′(ξ),

= axn−1
(
n− 1

2

)
(Tw − T∞)ξf ′(ξ)θ′(ξ)

− axn−1
(
n− 1

2

)
(Tw − T∞)ξf ′(ξ)θ′(ξ)

− axn−1
(
n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ),

u
∂T

∂x
+ v

∂T

∂y
= −axn−1

(
n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ). (3.24)

Using (3.20)-(3.23) in the right side of (3.3), we get

αnf
∂2T

∂y2
+

µnf
(ρCp)nf

(
∂u

∂y

)2

− 1

(ρCp)nf

∂qr
∂y

+
q

(ρCp)nf
(T − T∞)

= αnf

(
xn−1

(
a(n+ 1)

2νf

)
(Tw − T∞)θ′′(ξ)

)

+
µnf

(ρCp)nf

(
a2x3n−1

(
a(n+ 1)

2νf

)
f ′′2(ξ)

)

+
1

(ρCp)nf

(
16σ∗T 3

∞
3k∗

(Tw − T∞)xn−1
(
a(n+ 1)

2νf

)
θ′′(ξ)

)
+

q

(ρCp)nf
(Tw − T∞)θ(ξ). (3.25)

With the help of (3.24) and (3.25), the dimensionless form of (3.3), is obtained.

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

µnf
(ρCp)nf

(
∂u

∂y

)2

− 1

(ρCp)nf

∂qr
∂y

+
q

(ρCp)nf
(T − T∞),
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− axn−1
[(

n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ)

]
= αnf

[
xn−1

(
a(n+ 1)

2νf

)
(Tw − T∞)θ′′(ξ)

]
+

µnf
(ρCp)nf

(
a2x3n−1

(
a(n+ 1)

2νf

)
f ′′2(ξ)

)
+

q

(ρCp)nf
(Tw − T∞)θ(ξ)

+
1

(ρCp)nf

(
16σ∗T 3

∞
3k∗

(Tw − T∞)xn−1
(
a(n+ 1)

2νf

)
θ′′(ξ)

)
,

− νf
αnf

f(ξ)θ′(ξ) = θ′′(ξ) +
µnf

(ρCp)nfαnf

(
a2x2n

(Tw − T∞)

)
f ′′2(ξ)

+
1

(ρCp)nfαnf

(
16σ∗T 3

∞
3k∗

)
θ′′(ξ) +

q

(ρCp)nfαnfaxn−1

(
2νf
n+ 1

)
θ(ξ),(

1 +
16σ∗T∞
knf3k∗

)
θ′′(ξ) +

(ρCp)nfνf
knf

f(ξ)θ′(ξ) +
µnfa

2x2n

knf (Tw − T∞)
f ′′2(ξ)

+
q

knfaxn−1

(
2νf
n+ 1

)
θ(ξ) = 0,

knf
kf

(
1 +

4

3
R

)
θ′′(ξ) +

(ρCp)nfνf
knf

f(ξ)θ′(ξ) +
µnfa

2x2n

kf (Tw − T∞)
f ′′2(ξ)

+
q

kfaxn−1

(
2νf
n+ 1

)
θ(ξ) = 0,

knf
kf

(
1 +

4

3
R

)
θ′′(ξ) +

νf (ρCp)f

(
1− φ+ φ (ρCp)s

(ρCp)f

)
αf (ρCp)f

f(ξ)θ′(ξ)

+
µfa

2x2n

(1− φ)2.5(ρCp)fαf (Tw − T∞)
f ′′2(ξ) +

qxνf
(ρCp)fαfaxn

(
2

n+ 1

)
θ(ξ) = 0,

knf
kf

(
1 +

4

3
R

)
θ′′(ξ) + Pr

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
f(ξ)θ′(ξ)

+ Pr

(
Ec

(1− φ)2.5

)
f ′′2(ξ) + Pr

(
2

n+ 1

)
Qθ(ξ) = 0,

A4θ
′′(ξ) + PrA5f(ξ)θ′(ξ) + PrA6f

′′2(ξ) + Pr

(
2

n+ 1

)
Qθ(ξ) = 0. (3.26)

The corresponding BCs are transformed into the non-dimensional form through

the following procedure.

u = Uw(x) = axn, at y = 0.

⇒ u = af ′(ξ)xn.

⇒ af ′(ξ) = axn,

⇒ f ′(ξ) = 1, at ξ = 0.

⇒ f ′(0) = 1.
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v = 0, at y = 0.

⇒ − x
n−1
2

√
2νfa

n+ 1

(
n+ 1

2

)
f(ξ)− axn−1y

(
n− 1

2

)
f ′(ξ) = 0,

at ξ = 0.

⇒ − x
n−1
2

√
aνf (n+ 1)

2
f(0) = 0, at ξ = 0.

⇒ f(0) = 0.

T = Tw, at y = 0.

⇒ θ(ξ)(Tw − T∞) + T∞ = Tw,

⇒ θ(ξ)(Tw − T∞) = (Tw − T∞),

⇒ θ(ξ) = 1, at ξ = 0.

⇒ θ(0) = 1.

u→ (0), as y →∞.

⇒ af ′(ξ)xn → (0),

⇒ axnf ′(ξ)→ (0),

⇒ f ′(ξ)→ (0), as ξ →∞.

⇒ f ′(∞)→ 0.

T → T∞, as y →∞.

⇒ θ(ξ)(Tw − T∞) + T∞ → T∞,

⇒ θ(ξ)(Tw − T∞)→ 0, as ξ →∞.

⇒ θ(ξ)→ 0, as ξ →∞.

⇒ θ(∞)→ 0.

The final dimensionless form of the governing model, is

f ′′′(ξ) + A1A2

(
f(ξ)f ′′(ξ)−

(
2n

n+ 1

)
f ′2(ξ)

)

−

(
2

n+ 1

)
(K +MA1A3)f

′(ξ) = 0. (3.27)

A4θ
′′(ξ) + PrA5f(ξ)θ′(ξ) + PrA6f

′′2(ξ) + Pr

(
2

n+ 1

)
Qθ(ξ) = 0. (3.28)
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The associated BCs (3.4) in the dimensionless form are,

f(0) = 0, f ′(0) = 1, θ(0) = 1.

f ′(∞)→ 0, θ(∞)→ 0.

 (3.29)

Different dimensionless parameters used in equations (3.27) and (3.28) are formu-

lated as follows.

M =
σfB

2
0

ρfax−1
, K =

νf
ak0

, R =
4σ∗T 3

∞
knfk∗

,

P r =
νf
αf
, Ec =

U2
w

(cp)f (Tw − T∞)
, Q =

qx

(ρcp)fUw
.

The skin friction coefficient, is given as follows.

Cf =
τw|y=0

ρfU2
w(x)

. (3.30)

To achive the dimensionless form of Cf the following steps will be helpful.

Since

τw = µnf

(
∂u

∂y

)
y=0

, (3.31)

Cfx =
1

ρfUw(x)2
µnf

(
∂u

∂y

)
y=0

,

Cf =
1

ρfa2x2n
µnf

(
axnf ′′(ξ)x

n−1
2

√
(n+ 1)a

2νf

)
,

Cf =
µf

ρfa2x2n(1− φ)2.5

(
axnf ′′(ξ)x

n−1
2

√
(n+ 1)a

2νf

)
,

Cf =
νfρfa

3
2x

3n−1
2

ρfa2x2n(1− φ)2.5

√
(n+ 1)

2νf
f ′′(ξ),

Cf =
νf

a
1
2x

n+1
2 (1− φ)2.5

(
n+ 1

2

) 1
2

f ′′(ξ),

Cf =
1

Re
1
2
x (1− φ)2.5

(
n+ 1

2

) 1
2

f ′′(ξ),

Re
1
2
xCf =

1

(1− φ)2.5

(
n+ 1

2

) 1
2

f ′′(ξ), (3.32)
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where Re denotes the Reynolds number defined as Re = xux(x)
νf

.

Local Nusselt number is defined as follow.

Nux =
xqw

kf (Tw − T∞)
. (3.33)

To achive the dimensionless form of Nux, the following steps will be helpful.

Since

qw =

(
−
(
knf +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

))
y=0

, (3.34)

Nux = −
x
(
knf + 16σ∗T 3

∞
3k∗

)(
∂T
∂y

)
y=0

kf (Tw − T∞)
,

Nux = −
x
(
knf + 16σ∗T 3

∞
3k∗

)
kf (Tw − T∞)

(
∂T

∂y

)
y=0

,

Nux = −
x
(
knf + 16σ∗T 3

∞
3k∗

)
kf (Tw − T∞)

(
(n+ 1)a

2νf

) 1
2

x
n−1
2 (Tw − T∞)θ′(ξ),

= −knf
kf

(
1 +

4

3
R

)√
a(n+ 1)

2νf
x

n+1
2 θ′(ξ),

= −knf
kf

(
1 +

4

3
R

)√
n+ 1

2
θ′(ξ)

√
axn+1

νf
,

= −knf
kf

(
1 +

4

3
R

)√
n+ 1

2
θ′(ξ)Re

1
2
x ,

Re
−1
2
x Nux = −knf

kf

(
1 +

4

3
R

)(
n+ 1

2

) 1
2

θ′(ξ). (3.35)

3.3 Numerical Method for Solution

The shooting method has been used to solve the ordinary differential equation

(3.27). The following notations have been considered.

f = Z1, f ′ = Z ′1 = Z2, f ′′ = Z ′′1 = Z ′2 = Z3, f ′′′ = Z ′3.

A1 = (1− φ)2.5, A2 = 1− φ+ φ
ρs
ρf
, A3 = 1 +

3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ
.



MHD Radiative Nanofluid 31

As a result the momentum equation is converted into the following system of first

order ODEs.

Z ′1 = Z2, Z1(0) = 0.

Z ′2 = Z3, Z2(0) = 1.

Z ′3 = −A1A2

(
Z1Z3 −

(
2n

n+ 1

)
Z2

2

)
+

(
2

n+ 1

)
(K +MA1A3)Z2, Z3(0) = p.

The above IVP will be numerically solved by RK-4. The missing condition p is to

be chosen such that.

Z2(ξ∞, p) = 0.

Newton’s method will be used to find p. This method has the following iterative

scheme.

pn+1 = pn − Z2(ξ∞, p)
∂
∂p

(Z2(ξ∞, p))
.

We further introduce the following notations,

∂Z1

∂p
= Z4,

∂Z2

∂p
= Z5,

∂Z3

∂p
= Z6.

As a result of these new notations the Newton’s iterative scheme gets the form

pn+1 = pn − Z2(ξ∞, p)

Z5(ξ∞, p)
.

Now differentiating the system of three first order ODEs with respect to p, we get

another system of ODEs, as follows.

Z ′4 = Z5, Z4(0) = 0.

Z ′5 = Z6, Z5(0) = 0.

Z ′6 = −A1A2

(
Z1Z6 + Z3Z4 −

(
2n

n+ 1

)
2Z2Z5

)
+

(
2

n+ 1

)
(K +MA1A3)Z5, Z6(0) = 1.
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The stopping criteria for the Newton’s technique is set as.

| Z2(ξ∞, p) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

The equation (3.28) will be numerically solved by using shooting method by as-

suming f as a known function. For this we utilize the following notions.

θ = Y1, θ′ = Y2, θ′′ = Y ′2 .

A4 =
knf
kf

(
1 +

4

3
R

)
, A5 = 1− φ+ φ

(ρCp)s
(ρCp)f

, A6 =
Ec

(1− φ)2.5
.

As a result, the energy equation (3.28) is converted into the following system of

first order ODEs.

Y ′1 = Y2, Y1(0) = 1.

Y ′2 = −Pr
A4

(
A5fY2 + A6f

′′2 +

(
2

n+ 1

)
QY1

)
, Y2(0) = q.

The above initial value problem (IVP) will be numerically solved by RK-4 tech-

nique. In the above initial value problem, the missing condition q is to satisfy the

following relation.

Y1(ξ∞, q) = 0.

The above equation can be solved by using Newton’s method with the following

iterative formula.

qn+1 = qn − Z1(ξ∞, q)

Z ′1(ξ∞, q)
.

We further introduce the following notations,

∂Y1
∂q

= Y3,
∂Y2
∂q

= Y4.
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Now differentiating the system of two first order ODEs with respect to q, we get

another system of ODEs, as follows.

Y ′3 = Y4, Y3(0) = 0.

Y ′4 = −Pr
A4

(
A5fY4 +

(
2

n+ 1

)
QY3

)
, Y4(0) = 1.

The stopping criteria for the Newton’s method is set as.

| Y1(ξ∞, q) |< 10−10.

3.4 Representation of Graphs and Tables

A thorough discussion on the graphs and tables has been conducted which contains

the impact of dimensionless parameters on the skin friction coefficient (Rex)
1
2Cf

and local Nusselt number (Rex)
−1
2 Nux. Table 3.1 explains the impact of nonlin-

ear stretching parameter n, magnetic parameter M , nanoparticle volume fraction

φ and permeability parameter K on (Rex)
1
2Cf . For the rising values of φ, the

skin fraction coefficient (Rex)
1
2Cf decreases. In Table 3.2, the effect of significant

parameters on local Nusselt number (Rex)
−1
2 Nux has been discussed. The rising

pattern is found in (Rex)
−1
2 Nux due to increasing values of n.

Figures 3.2-3.5 reflect the behaviour of the velocity profile f ′(ξ) and temperature

profile θ(ξ) for different values of φ with and without M .

Figures 3.6 and 3.7 show the impact of K. For the rising values of K, the velocity

profile f ′(ξ) decreases and the temperature profile θ(ξ) increases

Figures 3.8 and 3.9 represent the impact of n on f ′(ξ) and θ(ξ). It can be ob-

served from Figure 3.8 that the velocity profile increases for larger values of n.

This increment in the non-dimensional velocity of stretching is due to the greater

value of n and helps to cause more liquid deformation. As the value of n increases,

the momentum boundary layer becomes thicker, whereas with an increase in n, a

reduction in the temperature profile is observed, leading to an increase in the heat

transfer.
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Figure 3.10 illustrates the impact of heat generation Q on θ(ξ). It is observed

that for the rising values of Q, more heat is generated, because of this θ(ξ) and

boundary layer thickness increases.

From Figure 3.11, it can be seen that by increasing the values of Eckert number

Ec, the temperature profile also increases. Figure 3.12 shows the impact of ther-

mal radiation R on θ(ξ). In this graph it is observed that on the rising values of R,

the temperature profile θ(ξ) also increases. So, rate of heat transfer decreases with

increase in thermal radiation R, because of that temperature profile θ(ξ) increases.

Figure 4.13 displays the impact of M on the velocity distribution. By rising the

values of M , the velocity distribution shows the decreasing behavior due to the

presence of Lorentz force. Figure 4.14 describes the impact of M on the temper-

ature distribution. The temperature distribution expands by rising the values of

M . Figure 3.15 shows the influence of Prandtl number Pr, on θ(ξ). The rising

values of Pr, the temperature profile θ(ξ) is decreased.

Table 3.1: Results of (Rex)
1
2Cf for various parameters

φ n M K (Rex)
1
2Cf

0.0 2.0 2.0 1.0 -2.197435

0.1 2.0 2.0 1.0 -3.071673

0.2 2.0 2.0 1.0 -4.176089

0.1 1.0 2.0 1.0 -2.738772

0.1 3.0 2.0 1.0 -3.371334

0.1 7.0 2.0 1.0 -4.367344

0.1 2.0 1.0 1.0 -2.774333

0.1 2.0 3.0 1.0 -3.342529

0.1 2.0 4.0 1.0 -3.342529

0.1 2.0 2.0 0.0 -2.781840

0.1 2.0 2.0 2.0 -3.336290

0.1 2.0 2.0 3.0 -3.581328

0.1 2.0 2.0 4.0 -3.810591
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Table 3.2: Results of −(Rex)
−1
2 Nux some fixed parameters φ = 0.1, K = 1.0

R = 0.5

n M Q Ec Pr −(Rex)
−1
2 Nux

2.0 2.0 0.1 0.2 6.2 0.518692

3.0 2.0 0.1 0.2 6.2 0.928781

4.0 2.0 0.1 0.2 6.2 1.258709

5.0 2.0 0.1 0.2 6.2 1.540036

7.0 2.0 0.1 0.2 6.2 2.012070

8.0 2.0 0.1 0.2 6.2 2.217215

2.0 0.0 0.1 0.2 6.2 1.197220

2.0 1.0 0.1 0.2 6.2 0.837433

2.0 2.0 0.1 0.2 6.2 0.518692

2.0 3.0 0.1 0.2 6.2 0.231713

2.0 4.0 0.1 0.2 6.2 -0.029851

2.0 5.0 0.1 0.2 6.2 -0.270517

2.0 2.0 0.0 0.2 6.2 0.901739

2.0 2.0 0.1 0.2 6.2 0.518692

2.0 2.0 0.2 0.2 6.2 0.051935

2.0 2.0 0.3 0.2 6.2 -0.563865

2.0 2.0 0.4 0.2 6.2 -1.504916

2.0 2.0 0.1 0.0 6.2 2.168818

2.0 2.0 0.1 0.1 6.2 1.343755

2.0 2.0 0.1 0.2 6.2 0.518692

2.0 2.0 0.1 0.3 6.2 -0.306370

2.0 2.0 0.1 0.4 6.2 -1.131433

2.0 2.0 0.1 0.5 6.2 -1.956497

2.0 2.0 0.1 0.2 3.0 0.470148

2.0 2.0 0.1 0.2 4.0 0.474044

2.0 2.0 0.1 0.2 5.0 0.492361

2.0 2.0 0.1 0.2 7.0 0.533803

2.0 2.0 0.1 0.2 9.0 0.553315
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Figure 3.2: Impact of φ on f ′(ξ) for M = 0.
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Figure 3.3: Impact of φ on θ(ξ) for M = 0.
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Figure 3.4: Impact of φ on f ′(ξ) for M = 2.
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Figure 3.5: Impact of φ on θ(ξ) for M = 2.



MHD Radiative Nanofluid 38

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K=0.0
K=1.0
K=3.0
K=4.0M=2.0, n=2.0, =0.05

Figure 3.6: Impact of K on the velocity profile.
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Figure 3.7: Impact of K on the temperature profile.
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Figure 3.8: Impact of n on the velocity profile.
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Figure 3.9: Impact of n on the temperature profile.
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Figure 3.10: Impact of Q on the temperature profile.
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Figure 3.11: Impact of Ec on the temperature profile.
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Figure 3.12: Impact of R on the temperature profile.
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Figure 3.13: Impact of M on the velocity profile.
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Figure 3.14: Impact of M on the temperature profile.
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Figure 3.15: Impact of Pr on the temperature profile.



Chapter 4

MHD Radiative Nanofluid Flow

with Cattaneo-Christov Heat

Flux and Concentration with

Chemical Reaction

4.1 Introduction

This chapter contains the extension of the model [44] by considering aligned mag-

netic field in momentum equation. The Cattaneo-Christov heat flux, thermophore-

sis diffusion and Brownian motion are also included in the temperature equation.

Furthermore concentration equation is also taken into account along the with

chemical reaction. The governing nonlinear PDEs are converted into a system of

dimensionless ODEs by utilizing the similarity transformations. The numerical

solution of ODEs is obtaind by applying numerical method known as shooting

method. At the end of this chapter, the final results are discussed for significant

parameters affecting f ′(ξ), θ(ξ) and h(ξ) which are shown in tables and graphs.

43
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4.2 Mathematical Modeling

Figure 4.1: Geometry of physical model.

It is aimed to analyse the 2D, MHD flow of nanofluid past a nonlinear stretching

sheet and porous medium. The flow occupied the space y > 0. Magnetic field

of strength B is applied with an inclination angle γ with the horizantal axis.

Furthermore x-axis is taken in the direction of flow and y-axis normal to it. Energy

transport analysis is also carried out in the presence of thermal radiation, viscous

dissipation and Cattaneo-Christov heat flux. Moreover, the concentration of flow

is discussed with the help of concentration equation under the effect of chemical

reaction.
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By considering the above assumptions, the governing PDEs are.

∂u

∂x
+
∂v

∂y
= 0, (4.1)

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= µnf

(
∂2u

∂y2

)
− µnf
k(x)

u− σnfB2(x) sin2(γ)u, (4.2)

u
∂T

∂x
+ v

∂T

∂y
+ λ

[
u
∂u

∂x

∂T

∂x
+ v

∂v
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∂T

∂y
+ u

∂v

∂x
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∂y
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∂T

∂x
+ 2uv
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+ u2
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∂x2
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∂y2

]
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(
∂2T

∂y2

)
+
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(ρCp)nf

(
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− 1
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(
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q
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(T − T∞) + τ

(
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∂C

∂y

∂T

∂x
+
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(
∂T
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)2
)
, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
−Kr(C − C∞). (4.4)

The associated BCs have been taken as.

u = Uw(x) = axn, v = 0, T = Tw, C = Cw at y = 0.

u→ 0, T → T∞, C → C∞ as y →∞.

 (4.5)

Following similarity transformation has been used to convert PDEs (4.1)-(4.4) into

system of ODEs.

ψ(x, y) =

√
2νfa

n+ 1
x

n+1
2 f(ξ),

ξ = y

√
a(n+ 1)

2νf
x

n−1
2 ,

θ(ξ) =
T − T∞
Tw − T∞

,

h(ξ) =
C − C∞
Cw − C∞

,


(4.6)

where ψ stands for the stream function, ξ denotes the similarity variable, f , θ,

and h are the dimensionless velocity, temperature and concentration.

The detailed procedure for the conversion of (4.1) has been discussed in chapter

3.

∂u

∂x
+
∂v

∂y
= 0. (4.7)
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Now, I include the below procedure for the conversion of (4.2) into the dimension-

less form.

u =
∂ψ

∂y
,

u =
∂

∂y

(√
2νfa

n+ 1
x

n+1
2 f(ξ)

)
,

u = axnf ′(ξ). (4.8)
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(√
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x
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)
,
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2
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2
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The complete procedure for the conversion of (4.2) discussed in chapter 3.

f ′′′(ξ) + A1A2

(
f(ξ)f ′′(ξ)−

(
2n

n+ 1

)
f ′2(ξ)

)
−

(
2

n− 1

)
(K + A1A3M sin2 (γ))f ′(ξ) = 0. (4.12)

Now, we include below the procedure for the conversion of equation (4.3) into the

dimensionless form. The (4.13)-(4.20) we have already derived in chapter 3.
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Adding equations (4.22)-(4.28), we get.
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2νf
(Tw − T∞)f ′2(ξ)θ′(ξ)

+ a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2νf

)
(Tw − T∞)f ′(ξ)f ′′(ξ)θ′(ξ)

+ na2x2n−2
(
n+ 1

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ)

+ a2x
5n−5

2 y

(
n+ 1

2

)(
n− 1

2

)√
(n+ 1)a

2νf
(Tw − T∞)f(ξ)f ′′(ξ)θ′(ξ)

− a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2νf

)
(Tw − T∞)f ′(ξ)f ′′(ξ)θ′(ξ)

− (n− 1)a2x
5n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2νf
(Tw − T∞)f ′2(ξ)θ′(ξ)

− a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2νf
(Tw − T∞)f ′2(ξ)θ′(ξ)

− a2x2n−2
(
n− 1

2

)(
n+ 1

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ)

− a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2νf

)
(Tw − T∞)f ′(ξ)f ′′(ξ)θ′(ξ)

− a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2νf
(Tw − T∞)f(ξ)f ′′(ξ)θ′(ξ)

− 2a2x
5n−5

2 y

(
n− 1

2

)2√
(n+ 1)a

2νf
(Tw − T∞)f ′2(ξ)θ′(ξ)

− 2a2y2x3n−3

(
n− 1

2

)2
(n+ 1)a

2νf
(Tw − T∞)f ′2(ξ)θ′′(ξ)

− 2a2x2n−2

(
n− 1

2

)(
n+ 1

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ)

− 2a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2νf
(Tw − T∞)f(ξ)f ′(ξ)θ′′(ξ)
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+ a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2νf

)
(Tw − T∞)f ′2(ξ)θ′′(ξ)

+ a2x
5n−5

2 y

(
n− 1

2

)(
n− 3

2

)√
(n+ 1)a

2νf
(Tw − T∞)f ′2(ξ)θ′(ξ)

+ a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2νf

)
(Tw − T∞)f ′2(ξ)θ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

+ 2a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2νf
(Tw − T∞)f(ξ)f ′(ξ)θ′′(ξ),

= a2x2n−2
(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

+ a2x2n−2
[
n+ 1

2

][
n−

(
n− 1

2

)
− 2

(
n− 1

2

)]
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ),

= a2x2n−2
(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)(
n−

(
n− 1

2

)
− (n− 1)

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ),

= a2x2n−2
(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)(
2n− n+ 1

2
− n+ 1

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ),

= a2x2n−2
(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)(
2n− n+ 1− 2n+ 2

2

)
(Tw − T∞)f(ξ)f ′(ξθ′(ξ),

= a2x2n−2

(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

+ a2x2n−2

(
n+ 1

2

)(
−n+ 1 + 2

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ),

= a2x2n−2

(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

+ a2x2n−2

(
n+ 1

2

)(
−n+ 3

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ),

= a2x2n−2

(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

− a2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ). (4.29)
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∂T

∂y
= x

n−1
2

√
(n+ 1)a

2νf
(Tw − T∞)θ′(ξ). (4.30)

∂C

∂y
= x

n−1
2

√
(n+ 1)a

2νf
(Cw − C∞)h′(ξ). (4.31)(

∂T

∂y

)2

= xn−1
(n+ 1)a

2νf
(Tw − T∞)2θ′2(ξ). (4.32)

τ

(
DB

(
∂T

∂y

∂C

∂y

)
+
DT

T∞

(
∂T

∂y

)2
)

= τ

(
DT

T∞
xn−1

(n+ 1)a

2νf
(Tw − T∞)2θ′2(ξ)

)

+ τ

(
DB

[
x

n−1
2

√
(n+ 1)a

2νf
(Tw − T∞)θ′(ξ)

][
x

n−1
2

√
(n+ 1)a

2νf
(Cw − C∞)h′(ξ)

])
,

= τDBx
n−1
(

(n+ 1)a

2νf

)
(Tw − T∞)(Cw − C∞)θ′(ξ)h′(ξ)

+ τ
DT

T∞
xn−1

(
(n+ 1)a

2νf

)
(Tw − T∞)2θ′2(ξ),

=
τDB(Cw − C∞)

νf
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′(ξ)h′(ξ)

+
τDT (Tw − T∞)

T∞νf
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′2(ξ),

= axn−1

(
n+ 1

2

)
Nb(Tw − T∞)θ′(ξ)h′(ξ)

+ axn−1

(
n+ 1

2

)
Nt(Tw − T∞)θ′2(ξ),

= axn−1

(
n+ 1

2

)
(Tw − T∞)

(
Nbθ′(ξ)h′(ξ) +Ntθ′2(ξ)

)
. (4.33)

Left hand side of (4.3)

= −axn−1
(n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ) + λa2x2n−2

(n+ 1

2

)2
(Tw − T∞)f 2(ξ)θ′′(ξ)

− λa2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ). (4.34)

Right hand side of (4.3)

= αnfax
n−1
(
n+ 1

2νf

)
(Tw − T∞)θ′′(ξ) +

µnf
(ρCp)nf

a3x3n−1
(
n+ 1

2νf

)
f ′′2(ξ)

− 1

(ρCp)nf

16σ∗T 3
∞

3k∗
axn−1(Tw − T∞)

(
n+ 1

2νf

)
θ′′(ξ) +

q

(ρCp)nf
(Tw − T∞)θ(ξ)
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+ axn−1
(
n+ 1

2

)
(Tw − T∞)

(
Nbθ′(ξ)h′(ξ) +Ntθ′2(ξ)

)
. (4.35)

Comparing (4.34) and (4.35)

− axn−1
(
n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ)

+ λa2x2n−2

(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

− λa2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ),

= αnfax
n−1
(
n+ 1

2νf

)
(Tw − T∞)θ′′(ξ) +

µnf
(ρCp)nf

a3x3n−1
(
n+ 1

2νf

)
f ′′2(ξ)

1

(ρCp)nf

16σ∗T 3
∞

3k∗
axn−1(Tw − T∞)

(
n+ 1

2νf

)
θ′′(ξ) +

q

(ρCp)nf
(Tw − T∞)θ(ξ)

+ axn−1
(
n+ 1

2

)
(Tw − T∞)

(
Nbθ′(ξ)h′(ξ) +Ntθ′2(ξ)

)
,

− νf
αnf

f(ξ)θ′(ξ) +
νf
αnf

λaxn−1
[(

n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
= θ′′(ξ) +

µnf
(ρCp)nfαnf

a2x2n

(Tw − T∞)
f ′′2(ξ) +

1

(ρCp)nfαnf

16σ∗T 3
∞

3k∗
θ′′(ξ)

+
q

(ρCp)nfαnfaxn−1

(
2νf
n+ 1

)
θ(ξ) +

νf
αnf

((Nbθ′(ξ)h′(ξ) +Ntθ′2(ξ)),

θ′′(ξ) +
νf (ρCp)nf

knf
f(ξ)θ′(ξ) +

µnf
knf

a2x2n

(Tw − T∞)
f ′′2(ξ) +

1

knf

16σ∗T 3
∞

3k∗
θ′′(ξ)

− νf (ρCp)nf
knf

λaxn−1
[(

n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
+

q

knfaxn−1

(
2νf
n+ 1

)
θ(ξ) +

νf (ρCpnf )

knf
(Nbθ′(ξ)h′(ξ) +Ntθ′2(ξ)) = 0. (4.36)

knf
kf

(
1 +

4

3
R

)
θ′′(ξ) +

νf (ρCp)nf
kf

f(ξ)θ′(ξ) +
µnf
kf

a2x2n

(Tw − T∞)
f ′′2(ξ)

− νf (ρCp)nf
kf

λaxn−1
[(

n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
+

νfq

kfaxn−1

(
2

n+ 1

)
θ(ξ) +

νf (ρCp)nf
kf

(Nbθ′(ξ)h′(ξ) +Ntθ′2(ξ)) = 0,

knf
kf

(
1 +

4

3
R

)
θ′′(ξ) +

νf (ρCp)fA5

αf (ρCp)f
f(ξ)θ′(ξ) +

νf
αf (1− φ)2.5

a2x2n

(Tw − T∞)
f ′′2(ξ)

− νf (ρCp)fA5

αf (ρCp)f
λaxn−1

[(
n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
+

νfq

αf (ρCp)faxn−1

(
2

n+ 1

)
θ(ξ) +

νf (ρCp)fA5

αf (ρCp)f
(Nbθ′(ξ)h′(ξ) +Ntθ′2(ξ)) = 0,



Nanofluid Flow with Cattaneo-Christov and Chemical Reaction 54

A4θ
′′(ξ) + A5Prf(ξ)θ′(ξ) + Pr

(
Ec

(1− φ)2.5

)
f ′′2(ξ) + Pr

(
2

n+ 1

)
Qθ(ξ)

+ A5Prγ1

((
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)− n+ 1

2
f 2(ξ)θ′′(ξ)

)
+ A5Pr(Nbθ

′(ξ)h′(ξ) +Ntθ′2(ξ)) = 0. (4.37)

Now, we include below the procedure for the conversion of equation (4.4) into the

dimensionless form.

h(ξ) =
C − C∞
Cw − C∞

,

C = (Cw − C∞)h(ξ) + C∞.

∂C

∂x
= (Cw − C∞)h′(ξ)

∂ξ

∂x
,

∂C

∂x
=

(
n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2νf
(Cw − C∞)h′(ξ). (4.38)

∂C

∂y
= (Cw − C∞)h′(ξ)

∂ξ

∂y
,

∂C

∂y
= x

n−1
2

√
a(n+ 1)

2νf
(Cw − C∞)h′(ξ). (4.39)

∂2C

∂y2
= x

n−1
2

√
a(n+ 1)

2νf
(Cw − C∞)h′′(ξ)

∂ξ

∂y
,

∂2C

∂y2
= x

n−1
2

√
a(n+ 1)

2νf
(Cw − C∞)h′′(ξ)

(
x

n−1
2

√
a(n+ 1)

2νf

)
,

∂2C

∂y2
= xn−1

(√
a(n+ 1)

2νf

)2

(Cw − C∞)h′′(ξ),

∂2C

∂y2
= xn−1

a(n+ 1)

2νf
(Cw − C∞)h′′(ξ). (4.40)

∂2T

∂y2
= xn−1

a(n+ 1)

2νf
(Tw − T∞)θ′′(ξ). (4.41)

Using (4.38) and (4.39) in left hand side of (4.4)

u
∂C

∂x
+ v

∂C

∂y
= axnf ′(ξ)

((
n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2νf
(Cw − C∞)h′(ξ)

)

+

(
n− 1

2
xn−1yaf ′(ξ)− x

n−1
2
n+ 1

2

√
2νfa

n+ 1
f(ξ)

)
x

n−1
2

√
a(n+ 1)

2νf
(Cw − C∞)h′(ξ),
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u
∂C

∂x
+ v

∂C

∂y
= ax

3n−3
2 y

(
n− 1

2

)√
a(n+ 1)

2νf
(Cw − C∞)f ′(ξ)h′(ξ)

− x
3n−3

2 y

(
n− 1

2

)√
a(n+ 1)

2νf
(Cw − C∞)f ′(ξ)h′(ξ)

− axn−1
(
n+ 1

2

)
(Cw − C∞)f(ξ)h′(ξ),

u
∂C

∂x
+ v

∂C

∂y
= −axn−1

(
n+ 1

2

)
(Cw − C∞)f(ξ)h′(ξ). (4.42)

Using (4.40) and (4.41) in right hand side of (4.4)

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
−Kr(C − C∞) = DBx

n−1
(
a(n+ 1)

2νf

)
(Cw − C∞)h′′(ξ)

+
DT

T∞
xn−1

(
a(n+ 1)

2νf

)
(Tw − T∞)θ′′(ξ)−Kr(Cw − C∞)h(ξ). (4.43)

Comparing (4.32) and (4.33)

− axn−1
(
n+ 1

2

)
(Cw − C∞)f(ξ)h′(ξ) = DBx

n−1

(
a(n+ 1)

2νf

)
(Cw − C∞)h′′(ξ)

+
DT

T∞
xn−1

(
a(n+ 1)

2νf

)
(Tw − T∞)θ′′(ξ)−Kr(Cw − C∞)h(ξ).

Dividing both side DBx
n−1a

(
n+1
2νf

)
(Cw − C∞)

− νf
DB

f(ξ)h′(ξ) = h′′(ξ) +
DT (Tw − T∞)

T∞DB(Cw − C∞)
θ′′(ξ)− Kr2νf

DB(n+ 1)axn−1
h(ξ),

h′′(ξ) + Lef(ξ)h′(ξ) +
DT τ(Tw − T∞)νf

T∞νfDBτ(Cw − C∞)
θ′′(ξ)− νf

DB

2Kr

(n+ 1)axn−1
h(ξ) = 0,

h′′(ξ) + Lef(ξ)h′(ξ) +
Nt

Nb
θ′′(ξ)− γ2Leh(ξ) = 0. (4.44)

Now discussing the procedure for conversion of boundary conditions into dimen-

sionless form.

u = Uw(x) = axn, at y = 0.

u = af ′(ξ)xn,

⇒ af ′(ξ)xn = axn,
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⇒ axnf ′(ξ) = axn,

⇒ f ′(ξ) = 1, at ξ = 0.

⇒ f ′(0) = 1.

v = 0, at y = 0.

⇒ − x
n−1
2

√
(n+ 1)νfa

2

(
f(ξ) + ξf ′(ξ)

(
n− 1

n+ 1

))
= 0, at ξ = 0.

⇒ − x
n−1
2

√
(n+ 1)νfa

2
f(ξ) = 0, at ξ = 0.

⇒ f(ξ) = 0,

⇒ f(0) = 0.

T = Tw, at y = 0.

⇒ θ(ξ)(Tw − T∞) + T∞ = Tw,

⇒ θ(ξ)(Tw − T∞) = (Tw − T∞),

⇒ θ(ξ) = 1, at ξ = 0.

⇒ θ(0) = 1.

C = Cw, at y = 0.

⇒ h(ξ)(Cw − C∞) + C∞ = Cw,

⇒ h(ξ)(Cw − C∞) = (Cw − C∞),

⇒ h(ξ) = 1, at ξ = 0.

⇒ h(0) = 1.

u→ (0), as y →∞.

⇒ af ′(ξ)xn → (0),

⇒ f ′(ξ)→ (0), as ξ →∞.

⇒ f ′(ξ)→ 0.

T → T∞, as y →∞.

⇒ θ(ξ)(Tw − T∞) + T∞ → T∞,

⇒ θ(ξ)(Tw − T∞)→ 0,

⇒ θ(ξ)→ 0, as ξ →∞.

⇒ θ(∞)→ 0.
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C → C∞, as y →∞.

⇒ h(ξ)(Cw − C∞) + C∞ → C∞,

⇒ h(ξ)(Cw − C∞)→ 0,

⇒ h(ξ)→ 0, as ξ →∞.

⇒ h(∞)→ 0.

The final dimensionless form of the governing model, is

f ′′′(ξ) + A1A2

(
f(ξ)f ′′(ξ))−

(
2n

n+ 1

)
f ′2(ξ)

)
−
(

2

n+ 1

)
(K +MA1A3 sin2(γ))f ′(ξ) = 0. (4.45)

A4θ
′′(ξ) + PrA5f(ξ)θ′(ξ) + PrA6f

′′2(ξ) + Pr

(
2

n+ 1

)
Qθ(ξ)

+ A5Prγ1

(
n− 3

2
f(ξ)f ′(ξ)θ′(ξ)− n+ 1

2
f 2(ξ)θ′′(ξ)

)
+ A5Pr(Nbθ

′(ξ)h′(ξ) +Ntθ′2(ξ)) = 0. (4.46)

h′′(ξ) + Lef(ξ)h′(ξ) +
Nt

Nb
θ′′(ξ)− γ2Leh(ξ) = 0. (4.47)

The associated BCs (4.5) in the dimensionless form are,

f(0) = 0, f ′(0) = 1, θ(0) = 1, h(0) = 1

f ′(∞)→ 0, θ(∞)→ 0, h(∞)→ 0.

 (4.48)

Different parameters used in equations (4.45)-(4.47) are formulated as follows.

M =
σfB

2
0

ρfax−1
, K =

νf
ak0

, R =
4σ∗T 3

∞
knfk∗

, γ1 = axn−1λ,

Pr =
νf
αf
, Ec =

U2
w

(cp)f (Tw − T∞)
, Q =

qx

(ρcp)fUw
, Le =

νf
DB

γ2 =
2kr

(n+ 1)axn−1
Nb =

τDB(Cw − C∞)

νf
, Nt =

τDT (Tw − T∞)

T∞νf
.

The local Sherwood number are defined as

Shx =
xqm

DB(Cw − C∞)
. (4.49)
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To achive the dimensionless form of Shx, the following step will be helpful.

Since

qm = −DB

(
∂C

∂y

)
y=0

, (4.50)

Shx = − xDB

DB(Cw − C∞)

(
∂C

∂y

)
y=0

,

Shx = − x

(Cw − C∞)
x

n−1
2

√
a(n+ 1)

2νf
(Cw − C∞)h′(ξ),

Shx = −x
n+1
2

√
a(n+ 1)

2νf
h′(ξ),

Shx = −

√
axn+1

νf

(
n+ 1

2

) 1
2

h′(ξ),

Shx = −Re
1
2
x

(
n+ 1

2

) 1
2

h′(ξ),

Shx

Re
1
2
x

= −

(
n+ 1

2

) 1
2

h′(ξ),

Re
−1
2
x Shx = −

(
n+ 1

2

) 1
2

h′(ξ), (4.51)

where Re = xux(x)
νf

.

4.3 Solution Methodology

In order to solve the system of ODEs (4.45) the shooting method has been used.

The following notations have been cosidered.

f = Z1, f ′ = Z ′1 = Z2, f ′′ = Z ′′1 = Z ′2 = Z3, f ′′′ = Z ′3.

For simplification, the following notation have been defined.

A1 = (1− φ)2.5, A2 =

(
1− φ+ φ

ρs
ρf

)
, A3 = 1 +

3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ
.
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By using the notations, the equation (4.45) is converted into first order ODEs.

Z ′1 = Z2, Z1(0) = 0.

Z ′2 = Z3, Z2(0) = 0.

Z ′3 = −A1A2

(
Z1Z3 −

2n

n+ 1
Z2

2

)
+

(
2

n+ 1

)
(K +MA1A3 sin2(γ))Z2, Z3(0) = s.

The above initial value problem will be numerically solved by RK-4. The missing

condition ‘s’ assumed to satisfy the following relation.

Z2(ξ∞)s = 0.

To solve the above algebaric equations we use the Newton’s method which has the

following iterative scheme.

sn+1 = sn − (Z2(ξ∞))s=sn(
∂Z2(ξ∞)

∂s

)
s=sn

.

We further introduce the following notations,

∂Z1

∂s
= Z4,

∂Z2

∂s
= Z5,

∂Z3

∂s
= Z6.

As a result of these new notations, the Newton’s iterative scheme.

sn+1 = sn − (Z2(ξ∞))s=sn

(Z5(ξ∞))s=sn
.

Now differentiating system of three first order ODEs with respect to s, we get

three more ODEs.

Z ′4 = Z5, Z4(0) = 0.

Z ′5 = Z6, Z5(0) = 0.

Z ′6 = −A1A2

(
Z1Z6 + Z3Z4 −

(
2n

n+ 1

)
2Z2Z5

)
+

(
2

n+ 1

)
(K +MA1A3 sin2(γ))Z5, Z6(0) = 1.
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The missing condition s is updated by the Newton’s method and process will be

continued until the following criteria is met.

| (Z2(ξ∞))s=sn |< ε.

where ε is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

Also, for equations (4.46) and (4.47), the following notation have been used.

θ = Y1, θ′ = Y ′1 = Y2, θ′′ = Y ′2 .

h = Y3, h′ = Y ′3 = Y4, h′′ = Y ′4 .

A4 =
knf
kf

(
1 +

4

3
R

)
, A5 =

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
,

A6 = Pr

(
Ec

(1− φ)2.5

)
, A7 =

(
A4 − A5Prγ1

(
n+ 1

2

)
f 2

)
.

The system of equations (4.46) and (4.47), can be written in the form of the

following first order coupled ODEs.

Y ′1 = Y2, Y1(0) = 1.

Y ′2 = −Pr
A7

[
A5fY2 + A5γ1

(n+ 1

2

)
ff ′Y2 + A6f

′′2

+
( 2

n+ 1

)
QY1 + A5NbY2Y4 + A5NtY

2
2

]
, Y2(0) = l.

Y ′3 = Y4, Y3(0) = 1.

Y ′4 = Le(−fY4 + γ2Y3) +
Nt

Nb

[
Pr

A7

[
A5fY2 + A5γ1

(n+ 1

2

)
ff ′Y2

+ A6f
′′2 +

( 2

n+ 1

)
QY1 + A5NbY2Y4 + A5NtY

2
2

]]
, Y4(0) = m.

The RK-4 method has been taken into consideration for solving the above initial

value problem. For the above system of equtions, the missing conditions are to be

chosen such that.

(Y1(l,m))ξ=ξ∞ = 0, (Y3(l,m))ξ=ξ∞ = 0.
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To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

 ln+1

mn+1

 =

 ln
mn

−
∂Y1∂l ∂Y1

∂m

∂Y3
∂l

∂Y3
∂m

−1 Y1
Y3


Now, introduce the following notations,

∂Y1
∂l

= Y5,
∂Y2
∂l

= Y6,
∂Y3
∂l

= Y7,
∂Y4
∂l

= Y8.

∂Y1
∂m

= Y9,
∂Y2
∂m

= Y10,
∂Y3
∂m

= Y11,
∂Y4
∂m

= Y12.

As the result of these new notations, the Newton’s iterative scheme gets the form.

 ln+1

mn+1

 =

 ln
mn

−
Y5 Y9

Y7 Y11

−1 Y1
Y3


Now differentiating the system of four first order ODEs with respect to l, and m

we get another system of ODEs, as follows.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 = −Pr
A7

(
A5fY6 + A5γ1

(n+ 1

2

)
ff ′Y6 +

( 2

n+ 1

)
QY5

+ A5Nb(Y6Y4 + Y2Y8) + 2A5NtY2Y6

)
, Y6(0) = 1.

Y ′7 = Y8, Y7(0) = 0.

Y ′8 = Le(−fY8 + γ2Y7) +
Nt

Nb

(
Pr

A7

(
A5fY6 + A5γ1

(n+ 1

2

)
ff ′Y6

+
( 2

n+ 1

)
QY5 + A5Nb(Y6Y4 + Y2Y8) + 2A5NtY2Y6

))
, Y8(0) = 0.

Y ′9 = Y10, Y9(0) = 0.

Y ′10 = −Pr
A7

(
A5fY10 + A5γ1

(n+ 1

2

)
ff ′Y10 +

( 2

n+ 1

)
QY9

+ A5Nb(Y10Y4 + Y2Y12) + 2A5NtY2Y10

)
, Y10(0) = 0.
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Y ′11 = Y12, Y11(0) = 0.

Y ′12 = Le(−fY12 + γ2Y11) +
Nt

Nb

[
Pr

A7

[
A5fY10 + A5γ1

(n+ 1

2

)
ff ′Y10

+
( 2

n+ 1

)
QY9 + A5Nb(Y10Y4 + Y2Y12) + 2A5NtY2Y10

]]
, Y12(0) = 1.

The stopping criteria for the Newton’s method is set as.

max{|Y1(ξ∞)|, |Y3(ξ∞)|} < ε.

4.4 Representation of Graphs and Tables

The principle object is about to examine the impact of different parameters against

the velocity f ′(ξ), temperature θ(ξ) and concentration distribution h(ξ). The im-

pact of different factors like nonlinear stretching parameter n, magnetic parameter

M , thermal radiation R and Lewis number Le is observed graphically. Numerical

outcomes of the skin friction coefficient, local Nusselt number and local Sherwood

number for the distinct values of some fixed parameters are shown in Tables 4.1-

4.2.

Figures 4.2 and 4.3, show the effect of φ on velocity profile f ′(ξ) and temperature

profile θ(ξ) respectively. By enhancing the values of φ, the velocity profile de-

creases and increases the boundary layer thickness. Reason behind this behavior

is that, if we increases the φ effective viscosity will increase which provide more

resistance to fluid particles.

Figures 4.4 and 4.5 show the impact of permeability parameter K. For the rising

values of K, the velocity profile f ′(ξ) decreases and temperature profile θ(ξ) in-

creases.

Figure 4.6 displays the impact of stretching parameter n on the velocity distri-

bution. By rising the values of n, the velocity distribution show the increasing

behavior. Figure 4.7 describes the impact of stretching parameter n on temper-

ature distribution. By increasing the values of n, the temperature distribution is

decreased.
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The impact of heat generation Q on θ(ξ) can be seen in Figure 4.8. It is observed

that for increasing values of Q more heat is generated, because of this θ(ξ) and

thermal boundary layer thickness increases.

Figure 4.9 demonstrate the impact of Eckert number Ec, on θ(ξ) . As Eckert num-

ber specify the ratio of kinetic energy and enthalpy change of flow. It is clearly

obsreved that the θ(ξ) is increased by rising the values of Ec due to the decrement

in heat transfer rate.

Figure 4.10 shows the impact of thermal radiation R on the temperature distri-

bution θ(ξ). By enhancing the values of R, the temperature distribution θ(ξ) is

increased.

Figure 4.11 displays the impact of M , on the velocity distribution. The higher

values of M , shows decreasing behavior of velocity profile. As M specify as ratio

of Lorentz forces to the viscous forces, so with an increment in M Lorentz force

becomes dominant and it reduces the velocity of fiuid. Figure 4.12 describes the

impact of M on θ(ξ). The temperature distribution expands by enhancing the

values of M . Figure 4.13 describes the impact of M , on the concentration distri-

bution. Rising the values of M , the concentration distribution h(ξ) is increased

due to the presence of Lorentz force.

Figure 4.14, shows the impact of Prandtl number Pr on the temperature distribu-

tions. Since Pr is directly proportionate to the viscous diffusion rate and inversely

related to the thermal diffusivity, so the thermal diffusion rate suffers a reduction

for the larger values of Pr and subsequently, the temperature of the fluid drops

significantly. Moreover, a decrement in the thermal boundary layer thickness has

been noted.

Figure 4.15 and Figure 4.16 indicate the impact of Nb on the dimensionless tem-

perature and concentration distribution. The behavior of temperature distribution

is increased and concentration profile is decreased due to the accelerating values

of Nb.

Figure 4.17 shows the influence of relaxation time parameter γ1 on the tempera-

ture proflie θ(ξ). An decrement is noticed in temperature distribution by rising

the values of relaxation time parameter γ1.
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Figure 4.18-4.20 show the impact of inclined magnetic field γ on f ′(ξ), θ(ξ) and

h(ξ) distributions. Figure 4.18 displays the impact of inclination angle γ on the

velocity profile. Physically an increase in the inclination angle we are actually

increase the Lorentz force which are friction forces thus correspondingly the de-

creases velocity profile. Figure 4.19 increment is notced in the temperature dis-

tributions for the increasing values of γ. Physically by increasing the inclination

angle increase the Lorentz force which generate more heat and thus increase the

temperature profile. Figure 4.20 shows the impact of the inclination angle γ on

concentration profile. Enhancing the values of γ the concentration profile is de-

creased

Figure 4.21 shows the relationship between Lewis numbers Le and the dimen-

sional concentration distribution h(ξ). Concentration profile decreasing for the

rising values of Le and thus we have get a small molecular diffusivity and thermal

boundary layer.

Table 4.1: Results of (Rex)
1
2Cf for fixed parameter γ = π/3

φ n M K (Rex)
1
2Cf

0.0 2.0 2.0 1.0 -2.080434

0.1 2.0 2.0 1.0 -2.926805

0.2 2.0 2.0 1.0 -3.988520

0.1 1.0 2.0 1.0 -2.575523

0.1 3.0 2.0 1.0 -3.239700

0.1 7.0 2.0 1.0 -4.266206

0.1 2.0 1.0 1.0 -2.694844

0.1 2.0 3.0 1.0 -3.141588

0.1 2.0 4.0 1.0 -3.342529

0.1 2.0 2.0 0.0 -2.620896

0.1 2.0 2.0 2.0 -3.203476

0.1 2.0 2.0 3.0 -3.457976

0.1 2.0 2.0 4.0 -3.694925
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Table 4.2: Results of −(Rex)
−1
2 Nux and −(Rex)

−1
2 Shx some fixed parameters

γ = π/3, n = 2.0, K = 1.0, Ec = 0.2, Q = 0.1, Nt = Nb = 0.1

φ M R Pr γ1 Le γ2 −(Rex)
−1
2 Nux −(Rex)

−1
2 Shx

0.0 2.0 0.5 6.2 0.1 5.0 0.1 0.629182 2.056874

0.05 2.0 0.5 6.2 0.1 5.0 0.1 0.466804 2.116543

0.1 2.0 0.5 6.2 0.1 5.0 0.1 0.280950 2.173794

0.15 2.0 0.5 6.2 0.1 5.0 0.1 0.071398 2.228292

0.1 0.0 0.5 6.2 0.1 5.0 0.1 0.795658 2.085888

0.1 1.0 0.5 6.2 0.1 5.0 0.1 0.526569 2.129644

0.1 2.0 0.5 6.2 0.1 5.0 0.1 0.280950 2.173794

0.1 3.0 0.5 6.2 0.1 5.0 0.1 0.055493 2.217957

0.1 2.0 0.1 6.2 0.1 5.0 0.1 0.067574 2.305898

0.1 2.0 0.2 6.2 0.1 5.0 0.1 0.128470 2.260081

0.1 2.0 0.3 6.2 0.1 5.0 0.1 0.183624 2.224545

0.1 2.0 0.4 6.2 0.1 5.0 0.1 0.234113 2.196435

0.1 2.0 0.5 3.0 0.1 5.0 0.1 0.398620 2.055958

0.1 2.0 0.5 5.0 0.1 5.0 0.1 0.328947 2.126781

0.1 2.0 0.5 7.0 0.1 5.0 0.1 0.240460 2.207714

0.1 2.0 0.5 9.0 0.1 5.0 0.1 0.108374 2.300182

0.1 2.0 0.5 6.2 0.2 5.0 0.1 0.409990 2.140427

0.1 2.0 0.5 6.2 0.3 5.0 0.1 0.553534 2.103415

0.1 2.0 0.5 6.2 0.4 5.0 0.1 0.710646 2.062804

0.1 2.0 0.5 6.2 0.5 5.0 0.1 0.879991 2.018601

0.1 2.0 0.5 6.2 0.1 6.0 0.1 0.272986 2.409282

0.1 2.0 0.5 6.2 0.1 7.0 0.1 0.268145 2.624261

0.1 2.0 0.5 6.2 0.1 8.0 0.1 0.265270 2.823147

0.1 2.0 0.5 6.2 0.1 9.0 0.1 0.263679 3.009018

0.1 2.0 0.5 6.2 0.1 5.0 0.0 0.288737 1.871517

0.1 2.0 0.5 6.2 0.1 5.0 0.1 0.280950 2.173794

0.1 2.0 0.5 6.2 0.1 5.0 0.2 0.275834 2.423334

0.1 2.0 0.5 6.2 0.1 5.0 0.3 0.272352 2.638131
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Figure 4.2: Impact of φ on the velocity profile.
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Figure 4.3: Impact of φ on the temperature profile.
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Figure 4.4: Impact of K on the velocity profile.
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Figure 4.5: Impact of K on the temperature profile.
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Figure 4.6: Impact of n on the velocity profile.
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Figure 4.7: Impact of n on the temperature profile.
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Figure 4.8: Impact of Q on the temperature profile.
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Figure 4.9: Impact of Ec on the temperature profile.
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Figure 4.10: Impact of R on the temperature profile.
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Figure 4.11: Impact of M on the velocity profile.



Nanofluid Flow with Cattaneo-Christov and Chemical Reaction 71

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M=1.0
M=2.0
M=3.0
M=4.0

K=0.25, n=2.0, =0.05, = /3,
Pr=6.2, Ec=0.2, Q=0.1, R=0.5,
Nt=Nb= 1= 2=0.1, Le=5.0

Figure 4.12: Impact of M on the temperature profile.
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Figure 4.13: Impact of M on the concentration profile.
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Figure 4.14: Impact of Pr on the temperature profile.
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Figure 4.15: Impact of Nb on the temperature profile.
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Figure 4.16: Impact of Nb on the concentration profile .
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Figure 4.17: Impact of γ1 on the temperature profile.
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Figure 4.18: Impact of γ on the velocity profile.
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Figure 4.19: Impact of γ on the temperature profile.
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Figure 4.20: Impact of γ on the concentration profile.
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Figure 4.21: Impact of Le on the concentration profile.



Chapter 5

Conclusion

In this thesis, the work of Jafar et al. [44] is reviewed and extended with the

effect of inclined magnetic field, Cattaneo-Christov heat flux, Brownain motion,

thermophoresis diffusion and chemical reaction. First of all, momentum, energy

and concentration equations are converted into the ODEs by using some similarity

transformations. By using the shooting technique, numerical solution has been

found for the transformed ODEs. Using different values of the governing physical

parameters, the results are presented in the form of tables and graphs for velocity,

temperature and concentration profiles. The achievements of the current research

can be summarized as below:

• Increasing the values of φ, the velocity profile decreases while the tempera-

ture profile increases.

• For the enhancing values of R and Q, the temperature distribution is in-

creased.

• The velocity profile is decreased due to the increasing values of the perme-

ability paramater K.

• Rising the values of Prandtl number results in decrease the temperature

profile.
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• Increasing the magnetic parameter M results in a rise in the skin friction

coefficent.

• A decrement is noticed in Nusselt number due to ascending values of Prandtl

number.

• An increment is noticed in the temperature distribution by rising the values

of Eckert number Ec.

• By increasing the values of M , the concentration profile increased.

• With a rise in Nb, the temperature profile increases.

• Due to the ascending values of Le, the numerical values of local Shx is

increased.

• Due to the ascending values of the relaxation time parameter γ1, the values

of Nux are increased while Shx is decreased.
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